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ABSTRACT

The sequencing of jobs on a machine to minimize processing costs is a classical problem in
operations research. A key question is how to fairly allocate the resulting total cost among job
owners, which is addressed through cooperative game theory. Uncertainty in sequencing often
emerges in real-world scenarios when jobs arrive in unordered batches. This paper proposes
two new approaches to address such situations and discusses their practical applications. For
each approach, we define a cooperative cost game where the worst-case scenario for each
coalition is considered. First, we assume that there is no communication among batches, and
jobs in a coalition are placed last in their batch. In the second approach, we assume that
communication is allowed, and therefore, once jobs are placed last in their batch, they can
swap positions if they belong to a connected coalition and the rearrangement leads to cost
savings. Finally, we define and characterize rules to distribute the total cost, providing core
elements of the corresponding games.
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1. INTRODUCTION

This paper examines cooperative game theoretical approaches to sequencing problems, where a finite
set of jobs must be processed on one or multiple machines and the challenge lies in distributing the
total processing cost among job owners. The study of sequencing situations in cooperative game theory
originates with Curiel et al. (1989), who introduced sequencing games with an initial order of jobs, showing
how coalitions could achieve savings through admissible rearrangements and introducing and characterizing
the equal gain splitting rule. Subsequent contributions have enriched this framework. For instance, Curiel
et al. (1993) analyze additive and weakly increasing cost functions; Hamers et al. (1996) propose the split
core; and Slikker (2023) introduce the stable gain splitting rule.

Beyond the initial order model, several extensions have been explored. Hamers et al. (1995) study
equal processing times with proportional ready times, Borm et al. (2002) incorporate due-date criteria,
Çiftçi et al. (2013) address batch-processing machines; while other works focus on contexts such as family
setup times (Grundel et al., 2013) or endogenously chosen numbers of machines (Atay and Trudeau, 2024).
More recently, Saavedra-Nieves et al. (2025) investigate position-dependent costs.

In contrast, sequencing situations without an initial order has been studied by Chun (2006) and Klijn
and Sánchez Rodŕıguez (2006), who propose the proportional and cost splitting rules for equal processing
times. Gerichhausen and Hamers (2009) introduce partitioning sequencing situations, where jobs arrive in
ordered batches, with privileges given to earlier batches.

Motivated by real-world scenarios where the internal order of jobs within a batch is uncertain (e.g.,
vehicles arriving on tow trucks in a workshop), this paper develops a new model: sequencing situations with
batch-ordered jobs. To address cost allocation under partial order information, two pessimistic cooperative
cost games are defined. In the first model, coalition jobs are placed at the end of their respective batches
and are not allowed to exchange positions with jobs from other batches. In the second model, after being
placed last within their batches, coalition jobs may further rearrange their positions through admissible
swaps.

The total cost of the grand coalition, and thus the allocation among agents, depends on whether com-
munication among batches is allowed. The paper proposes and axiomatizes two corresponding allocation
rules, each yielding core elements of the respective games. Importantly, the model generalizes classical se-
quencing games: if each batch contains only one agent, it coincides with sequencing games with an initial



order; if there is only one batch, it coincides with sequencing games without an initial order. Hence, our
results can be readily adapted to these traditional sequencing situations.

The paper is organized as follows. Section 2 revisits key concepts from cooperative game theory and
summarizes relevant literature on sequencing games. Section 3 introduces and analyzes sequencing situa-
tions with batch-ordered jobs: Subsection 3.1 focuses on models without inter-batch communication, while
Subsection 3.2 considers scenarios where coalitions can rearrange jobs across batches and in Subsection
3.3, we define and characterize a cost allocation rule corresponding to each situation. To illustrate the
practical applicability of our approach, Section 4 presents a real-world case study involving job priori-
tization under partial sequencing information. Section 5 presents two generalizations of our model that
connect sequencing games with batch-ordered jobs to classical sequencing situations with or without an
initial order. Finally, the Appendix contains detailed proofs of technical results.

2. PRELIMINARIES, NOTATION AND LITERATURE REVIEW

Let N be a finite subset of the natural numbers and S ∈ 2N , we denote by s = |S| its cardinality and
for each i ∈ N\S, we denote S ∪ i instead of S ∪ {i}. Given x ∈ RN , we denote x(S) =

∑
i∈S

xi when

S ̸= ∅, and xS ∈ RS the vector x restricted to S. A cooperative game is a pair (N, c) where c : 2N → R
satisfies c(∅) = 0. The elements of N are called players, the subsets of N coalitions, and c the characteristic
function. We denote by CN the set of cooperative games with N as set of players and write c ∈ CN instead
of (N, c). To simplify, we write c(i1, . . . , is) instead of c({i1, . . . , is}). Let c ∈ CN , its corresponding cost

saving game is defined for each S ∈ 2N by vc(S) =
∑
i∈S

c(i)− c(S).

We say that an allocation x ∈ RN is efficient for a game c ∈ CN if x(N) = c(N). The set of all
efficient allocations for game c is the hyperplane H(c) =

{
x ∈ RN : x(N) = c(N)

}
. An allocation

x ∈ RN is stable if x(S) ≤ c(S) for all S ∈ 2N . The set of all stable allocations in the game c is
Core(c) =

{
x ∈ H(c) : x(S) ≤ c(S) for all S ∈ 2N

}
and is called the core of c. A game c ∈ CN is balanced

(cf. Bondareva, 1963) if its core is non-empty. An important class of games with non-empty core is the class
of concave games. A game c ∈ CN is concave if c(S∪ i)− c(S) ≥ c(T ∪ i)− c(T ) for all S, T ∈ 2N such that
S ⊂ T ⊂ N\{i}. The counterpart of concavity for cost savings games is convexity. Let P = {N1, . . . , Nm}
be a partition of N into m ≥ 2 non-empty subsets. A game c ∈ CN is decomposable with respect to P (cf.

Shapley, 1971) if for each S ∈ 2N , c(S) =

m∑
r=1

c(S ∩Nr). Shapley (1971) shows that a decomposable game

is concave if, and only if, each component is concave.

Let S ∈ 2N , Π(S) is the set of orders of S, that is, bijective functions from S to {1, . . . , s}. A generic
order of S is denoted by σS ∈ Π(S) where σS(i) = l means that player i is in position l in the order σS .
Given i ∈ S and σS ∈ Π(S), let P (i, σS) = {j ∈ S : σS(j) < σS(i)} and F (i, σS) = {j ∈ S : σS(j) > σS(i)}
be the set of predecessors and followers of i with respect to σS , respectively. Let S1, S2 ∈ 2N with
S1 ∩ S2 = ∅, and let σS1 ∈ Π(S1), σS2 ∈ Π(S2), the order σS1∪S2 = (σS1 , σS2) ∈ Π(S1 ∪ S2) denotes that
agents belonging to S1 are placed before agents belonging to S2 with σS1∪S2(i) = σS1(i) if i ∈ S1 and
σS1∪S2(i) = σS2(i) + s1 if i ∈ S2.

A sequencing situation is a triple (N, p, α) and, possibly, some (information on the) initial order, were
N = {1, . . . , n} is a finite set of agents, each one owning one job that has to be processed on a machine.
To simplify, we identify agent i’s job with i. The processing times of the jobs are given by p = (pi)i∈N

with pi > 0 for all i ∈ N . Each agent i ∈ N has a cost function ci : [0,∞) → R. For every t ∈ [0,∞), ci(t)
denotes the cost for job i if his completion time is equal to t. We assume that ci is linear for all i ∈ N .
Then, there exists αi, βi ≥ 0 such that ci(t) = αit+ βi for all i ∈ N , where βi is the service cost, which is
fixed, and αit is the completion cost.

For any σ ∈ Π(N), C(S, σ) is the aggregate (completion) cost of coalition S in the order σ, formally
defined by1

C(S, σ) =
∑
i∈S

αi

(
pi +

∑
j∈P (i,σ)

pj
)
.

An order that minimizes the aggregate cost of coalition N is called optimal order and it is denoted by
σ̂. An optimal order is obtained by ordering jobs in non-increasing order of their urgency indices, defined,
for each i ∈ N by ui = αi

pi
(Smith, 1956). We denote by Ω(N, p, α) the set of optimal orders for the

sequencing situation (N, p, α) that satisfy the condition that, when two jobs share the same urgency, the
one with shortest processing time goes first. Formally, if there exist i, j ∈ N such that ui = uj and pi < pj ,
σ̂(i) < σ̂(j) for all σ̂ ∈ Ω(N, p, α).

1Since βi is fixed for all i ∈ N , we consider ci(t) = αit.



A subsequent problem in a sequencing situation is the distribution of the total cost of the optimal order
among the agents. To address it, two different approaches concerning the information on the initial order
are considered.

� A sequencing situation with initial order (cf. Curiel et al., 1989) is a quadruple (N, p, α, σ0) where
σ0 ∈ Π(N) is the initial order of the jobs. We denote by S0 the class of all sequencing situations
with initial order.

� A sequencing situation without initial order (cf. Klijn and Sánchez Rodŕıguez, 2006; Chun, 2006) is
a triple (N, p, α) in which there is no information about an initial order. We denote by S the class
of all sequencing situations without initial order.

Given a sequencing situation with initial order (N, p, α, σ0) ∈ S0, we say that σ ∈ Π(N) is an admissible
order for coalition S ∈ 2N if P (i, σ) = P (i, σ0) for all i ∈ N\S. The set of all admissible orders for coalition
S is denoted by A(S, σ0) ∈ Π(N). A coalition S ∈ 2N is called connected if for all i, j ∈ S and k ∈ N ,
σ(i) < σ(k) < σ(j) implies k ∈ S. We say that a coalition S′ is a component of S if S′ ⊂ S, S′ is connected,
and for every i ∈ S\S′, S′ ∪ i is not connected. The components of S form a partition of S which we
denote by S/σ0. Curiel et al. (1989) define the gain of swapping i and j by gij = max{0, αjpi − αipj}.
The σ0-sequencing game (N, cσ0) (cf. Curiel et al., 1989), is defined by

cσ0(S) = min
σ∈A(S,σ0)

C(S, σ) for all S ∈ 2N .

Following Curiel et al. (1989), (N, cσ0) is concave
2.

A cost allocation rule on S0 is a mapping ψ that assigns to each sequencing situation with initial order
(N, p, α, σ0) ∈ S0 a vector ψ(N, p, α, σ0) ∈ RN . Hamers (1995) introduced the Gain Splitting rules (GS),
which generalize the Equal Gain Splitting rule (EGS) originally defined in Curiel et al. (1989). Translating
this formulation into cost terms, we define the Cost Splitting rules with initial order (CSO) as follows: for
every λ ∈ Λ and i ∈ N ,

CSOλ
i (N, p, α, σ0) = C(i, σ0)−

( ∑
k∈P (i,σ0)

(1− λki)gki +
∑

j∈F (i,σ0)

λijgij

)
.

As shown by Hamers (1995), CSOλ ∈ Core(cσ0) for all λ ∈ Λ.3

Next, we consider sequencing situations without initial order. The tail game (cf. Klijn and Sánchez Rodŕıguez,
2006) associated to (N, p, α) ∈ S is defined by

ctail(S) = C(S, (σN\S , σ̂S)) for all S ∈ 2N ,

where σN\S ∈ Π(N\S) and σ̂S ∈ Ω(S, pS , αS). In such a game, as there is no information about an initial
order, coalitions assume they will be processed at the tail of some “artificial” initial order. Klijn and
Sánchez Rodŕıguez (2006) show that the game (N, ctail) is concave.

A cost allocation rule on S is a map ψ that assigns to each sequencing situation without initial order,
(N, p, α) ∈ S, a vector ψ(N, p, α) ∈ RN . Klijn and Sánchez Rodŕıguez (2006) define the cost splitting rule
according to optimal orders (CS). Formally,

CS(N, p, α) =
( 1

|Ω(N, p, α)|
∑

σ̂∈Ω(N,p,α)

C(i, σ̂)
)
i∈N

.

They show that CS(N, p, α) ∈ Core(ctail) and characterize the rule in the class of sequencing situations
without initial order in which all jobs have the same processing time.

3. SEQUENCING SITUATIONS WITH BATCH-ORDERED JOBS

Let N be a set of agents and P = {N1, . . . , Nm} be a partition of N with m ≤ n. We introduce the
notion of batch order, which is denoted by σP = (N1, . . . , Nm). A batch order represents an initial order
in the partition in which jobs in N1 are initially placed before jobs in N\N1, jobs in N2 are initially placed
before jobs in N\(N1 ∪N2), and so on. The batch order does not provide information about the order of
jobs in the same batch. For each r ∈ {1, . . . ,m}, we denote Nr =

⋃
q≤r

Nq and, given i ∈ N , we denote by

r(i) the index of the element in P to which i belongs, that is, r(i) ∈ {1, . . . ,m} with i ∈ Nr(i).

2Curiel et al. (1989) show that the cost savings game of cσ0 is convex. Such a game is defined by

vcσ0
(S) =

∑
S′∈S/σ0

∑
i,j∈S′

i∈P (j,σ0)

gij for all S ∈ 2N .

3Hamers (1995) prove that GSλ ∈ Core(vcσ0
) for all λ ∈ Λ.



Definition 1. Let P = {N1, . . . , Nm} be a partition of N . A sequencing situation with batch-ordered jobs
is a quadruple (N, p, α, σP) where (N, p, α) is a sequencing situation without initial order and σP is a batch
order. We denote by SB the class of all sequencing situations with batch-ordered jobs.

We study how to distribute the total costs of a sequencing situation with batch-ordered jobs in the
framework of cooperative game theory. We consider two different approaches concerning the communica-
tion among agents of different batches and we introduce two cost allocation rules.

3.1 Sequencing situations with batch-ordered jobs without communication
In this section, we assume that there is no communication between two agents of two different batches.

Then, two jobs of two different batches cannot change their positions, that is, given i, j ∈ N such that
r(i) < r(j), job j can never be processed before job i. Next, we define the game with batch-ordered jobs
without communication.

Definition 2. Let P = {N1, . . . , Nm} be a partition of N and let (N, p, α, σP) ∈ SB with σP =
(N1, . . . , Nm). The associated game with batch-ordered jobs without communication, c̄σP ∈ CN , is de-
fined by

c̄σP (S) = C(S, σP∩S) for all S ∈ 2N ,

where σP∩S = (σN1\S , σ̂N1∩S , . . . , σNm\S , σ̂Nm∩S) ∈ Π(N) is an order such that, for all r ∈ {1, . . .m},
σNr\S ∈ Π(Nr\S) and σ̂Nr∩S ∈ Ω(Nr ∩ S, pNr∩S , αNr∩S).

The following results give insight into some properties of the game with batch-ordered jobs without
communication.

Proposition 3. Let P = {N1, . . . , Nm} be a partition of N and let (N, p, α, σP) ∈ SB with σP =
(N1, . . . , Nm),

1. c̄σP (S) =

m∑
r=1

crtail(Nr ∩ S) for all S ∈ 2N , where

crtail(T ) =


ctail(T ) if r = 1,∑
i∈T

αi

∑
j∈Nr−1

pj + ctail(T ) if r > 1,

for all T ∈ 2Nr , r ∈ {1, . . . ,m}.
2. c̄σP is decomposable with respect to P.

3. c̄σP is concave.

Proof. If m = 1, we deal with a sequencing situation without initial order and, therefore, the results are
immediate (cf. Klijn and Sánchez Rodŕıguez, 2006). Then, we consider m > 1.

1. First, we present an alternative method for expressing the characteristic function of c̄σP as the sum
of the batch costs according to σP∩S . Let S ∈ 2N ,

c̄σP (S) = C(S, σP∩S) =
∑
i∈S

αi(pi +
∑

j∈P (i,σP∩S)

pj) =

m∑
r=1

∑
i∈Nr∩S

αi(pi +
∑

j∈P (i,σP∩S)

pj)

=

m∑
r=1

C(Nr ∩ S, σP∩S). (1)

Now, we show that each element of the above sum corresponds to the characteristic function of the
game crtail. For all r ∈ {2, . . . ,m},

crtail(Nr ∩ S) =
∑

i∈Nr∩S

αi

∑
j∈Nr−1

pj +
∑

i∈Nr∩S

αi

∑
j∈P (i,σP∩S)∩Nr

pj

=
∑

i∈Nr∩S

αi

∑
j∈Nr−1∪

(
P (i,σP∩S)∩Nr

) pj =
∑

i∈Nr∩S

αi

∑
j∈P (i,σP∩S)

pj

= C(Nr ∩ S, σP∩S), (2)

where the first equality is true by definition of the ctail game restricted to Nr and the third one

follows since Nr−1 ∪
(
P (i, σP∩S) ∩Nr

)
= (Nr−1 ∪ P (i, σP∩S)) ∩Nr = P (i, σP∩S).

Therefore, combining Equations (1) and (2), c̄σP (S) =
m∑

r=1

crtail(Nr ∩ S).



2. We need to prove that, for all S ∈ 2N , c̄σP (S) =

m∑
r=1

c̄σP (Nr ∩ S). Let S ∈ 2N ,

c̄σP (S) =

m∑
r=1

C(Nr ∩ S, σP∩S) =

m∑
r=1

C(Nr ∩ S, σP∩(Nr∩S)) =

m∑
r=1

c̄σP (Nr ∩ S),

where the first equality follows by item 1, the second one since P (i, σP∩(Nr∩S)) = P (i, σP∩S) for all
i ∈ Nr ∩ S and all r ∈ {1, . . . ,m}, and the last one by definition of the game with batch-ordered
jobs without communication.

3. Following Shapley (1971), a decomposable game is concave if, and only if, each component is concave.
Then, we have to show that crtail is concave for each r ∈ {1, . . . ,m}. This follows since crtail is the
sum of a non-negative additive game and a tail game which are both concave. Therefore, c̄σP is
concave.

3.2 Sequencing situations with batch-ordered jobs with communication

Next, we consider situations where there is communication between batches. We define the σP -
sequencing game to model this situation. In this game, since there is no information about the order
of agents within the same batch, each coalition assumes that its members are processed last in their re-
spective batches, as in the previous model: for any S ∈ 2N , players belonging to S assume that there
is an “artificial” initial order σP∩S . Nevertheless, as there is communication between batches, given two
members of the same coalition in two different batches, they can swap positions if they are in a connected
coalition in that initial order (they cannot harm any agent belonging to N\S). Finally, coalitions pay bear
cost of being processed under the adjusted order.

Definition 4. Let P = {N1, . . . , Nm} be a partition of N and let (N, p, α, σP) ∈ SB with σP =
(N1, . . . , Nm). The associated σP -sequencing game, cσP ∈ CN , is defined by

cσP (S) = min
σ∈A(S,σP∩S)

C(S, σ) for all S ∈ 2N .

The σP -sequencing game is related to the game with batch-ordered jobs without communication: the
value of a coalition is the value of the coalition when communication among batches is not allowed minus
the possible cost savings from swapping jobs belonging to different batches.

Lemma 5. Let P = {N1, . . . , Nm} be a partition of N and let (N, p, α, σP) ∈ SB with σP = (N1, . . . , Nm).
The σP -sequencing game can be rewritten as

cσP (S) = c̄σP (S)− v(S) for all S ∈ 2N ,

where v(S) =
∑

S′∈S/σP∩S

∑
i,j∈S′

i∈P (j,σP∩S)

gij for all S ∈ 2N .

Proof. For all S ∈ 2N ,

cσP (S) = min
σ∈A(S,σP∩S)

C(S, σ) = C(S, σP∩S)−
∑

S′∈S/σP∩S

∑
i,j∈S′

i∈P (j,σP∩S)

gij = c̄σP (S)− v(S),

where the second equality is true by definition of the set of all admissible orders of σP∩S for coalition
S.

Example 6. Consider the sequencing situation with batch-ordered jobs (N, p, α, σP) ∈ SB such that
N = {1, 2, 3, 4}, P = {{1, 2}, {3, 4}}, σP = ({1, 2}, {3, 4}), p = (1, 1, 1, 1) and α = (1, 2, 3, 4).

First, we compute c̄σP . For instance, for coalition S = {2, 3} we have c̄σP (S) = C(S, (1, 2, 4, 3)) = 16.
The values for one- and two-player coalitions are shown below:

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
c̄σP (S) 2 4 12 16 4 14 18 16 20 24

The remaining values can be obtained by additivity (Proposition 3, item 2):



S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N
c̄σP (S) 16 20 26 28 28

Now, we compute cσP . By definition, cσP (S) = c̄σP (S) for all coalitions except {1, 3, 4}, {2, 3, 4} and
N , where members are allowed to swap positions within admissible rearrangements. Specifically:

� cσP (1, 3, 4) = min
σ∈A({1,3,4},(2,1,4,3))

C({1, 3, 4}, σ) = C({1, 3, 4}, (2, 4, 3, 1)) = 21,

� cσP (2, 3, 4) = min
σ∈A({2,3,4},(1,2,4,3))

C({2, 3, 4}, σ) = C({2, 3, 4}, (1, 4, 3, 2)) = 25,

� cσP (N) = min
σ∈A(N,(2,1,4,3))

C(N,σ) = C(N, (4, 3, 2, 1)) = 20.

It turns out that σP -sequencing games are concave. Before we show that the game v ∈ CN defined in
Lemma 5 is convex. To do that, we need to analyse the impact of the entrance of a player into a coalition
regarding positional changes among players of the coalition. Given S ∈ 2N and i ∈ N\S, we need to study
two possible extra cost savings by swapping jobs from different batches when i joins S:

(i) Those jobs that are in batches Nr(i)+1, . . . , Nm; this situation is only possible if r(i) < m and
Nr(i)+1 ⊂ S. In such case, r+S,i is the largest index with Nr(i)+1 ∪ . . . ∪ N

r+
S,i

⊂ S if r(i) < m and

Nr(i)+1 ⊂ S, and r+S,i = 1 otherwise. Formally,

r+S,i =

 max{r ∈ {r(i) + 1, . . . ,m} :

r⋃
p=r(i)+1

Np ⊂ S} if r(i) < m and Nr(i)+1 ⊂ S,

1 otherwise.

If r+S,i > 1, we denote M+
S,i =

r+
S,i⋃

q=r(i)+1

Nq.

(ii) Those jobs that are in batches N1, . . . , Nr(i)−1; this situation is only possible if r(i) > 1 and Nr(i) ⊂
S ∪ i. In such case, r−S,i is the smallest index with N

r−
S,i

+1
∪ . . . ∪Nr(i) ⊂ S ∪ i and N

r−
S,i

∩ S ̸= ∅ if

r(i) > 1, and r−S,i = m otherwise. Formally,

r−S,i =

 min{r ∈ {1, . . . , r(i)− 1} :

r(i)⋃
p=r+1

Np ⊂ S ∪ i, Nr ∩ S ̸= ∅} if r(i) > 1 and Nr(i) ⊂ S ∪ i,

m otherwise.

If r−S,i < m, we denote M−
S,i =

r(i)−1⋃
q=r−

S,i

Nq.

In Figure 1, we show an example of a sequencing situation with batch-ordered jobs in which r+S,i > 1

and r−S,i < m.

M−
S,i M+

S,i

. . .

Nr−S,i

N\S

S

Nr−S,i+1

S

. . .

Nr(i)−1

S

Nr(i)

S

i

Nr(i)+1

S

. . .

Nr+S,i

S

Nr+S,i+1
N\S

S

. . .

Figure 1: Sequencing situation with batch-ordered jobs in which r+S,i > 1 and r−S,i < m.

Definition 7. Let P = {N1, . . . , Nm} be a partition of N , (N, p, α, σP) ∈ SB with σP = (N1, . . . , Nm).
Let S ∈ 2N and i ∈ N\S. We say that i is a connector in S if there exists j ∈ Nr(i)−1 ∩ S, k ∈ Nr(i) ∩ S
and T ∈ (S ∪ i)/σP∩S such that i, j, k ∈ T .

We now examine the marginal contribution depending on whether i acts as a connector in S or not.



� If i is not connector in S, when i enters coalition S, additional cost savings may arise by neighbour
switches of i with agents in M+

S,i. Then,

v(S ∪ i)− v(S) =


0 if r+S,i = 1,∑
k∈M+

S,i

gik otherwise. (3)

In Figure 2 we illustrate graphically a situation in which r+S,i > 1.
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Figure 2: Orders σP∩S and σP∩(S∪i) when i is not connector in S.

� If i is connector in S, when i enters coalition S, new cost savings may be possible by neighbour
switches of i with agents in M−

S,i ∪M
+
S,i and by neighbour switches of agents in M−

S,i with agents in

M+
S,i. Then,

v(S ∪ i)− v(S) =


∑

j∈S∩M−
S,i

∑
k∈Nr(i)

gjk if r+S,i = 1,

∑
j∈S∩M−

S,i

∑
k∈M+

S,i
∪Nr(i)

gjk +
∑

k∈M+
S,i

gik otherwise.
(4)

In Figure 3 we illustrate graphically a situation in which r+S,i > 1.
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Figure 3: Orders σP∩S and σP∩(S∪i) when i is connector in S.

Proposition 8. Let P = {N1, . . . , Nm} be a partition of N and let (N, p, α, σP) ∈ SB with σP =

(N1, . . . , Nm). The game v ∈ CN , defined by v(S) =
∑

S′∈S/σP∩S

( ∑
i,j∈S′

i∈P (j,σP∩S)

gij
)

for all S ∈ 2N , is

convex.

Proof. Let i ∈ N and S ⊂ T ⊂ N \ {i}. We must show v(T ∪ {i})− v(T ) ≥ v(S ∪ {i})− v(S).



From the definitions we note the following: (1) If i is a connector in S, then i is also a connector in T
(but not necessarily the reverse). (2) The sets of agents with whom i (or its neighbors) can swap increase
with the coalition: M+

S,i ⊆M+
T,i and M

−
S,i ⊆M−

T,i. (3) All swap gains gab are nonnegative.

Considering separately the possible cases for i (non-connector vs. connector, and the value of r+S,i), it
follows that v(T ∪ {i})− v(T ) ≥ v(S ∪ {i})− v(S). Therefore, v is convex.

The following result is a direct consequence of Lemma 5 and Propositions 3 and 8. From Lemma 5, we
obtain that cσP = c̄σP − v and concavity of c̄σP (Proposition 3) and convexity of v (Proposition 8) imply
concavity of cσP . The proof is, therefore, omitted.

Theorem 9. Let P = {N1, . . . , Nm} be a partition of N and let (N, p, α, σP) ∈ SB with σP = (N1, . . . , Nm).
The game (N, cσP ) is concave.

3.3 Cost allocation rules
Having described the main properties of the games, we now turn to the problem of finding (intuitive)

cost allocation rules for the class of sequencing situations with batch-ordered jobs. A cost allocation rule on
the class of sequencing situations with batch-ordered jobs is a map ψ that assigns to each (N, p, α, σP) ∈ SB
a vector ψ(N, p, α, σP) ∈ RN . We denote by Ω(N, p, α, σP) the set of optimal orders of the problem where
the initial order of the batches is respected, that is, if σ̂P ∈ Ω(N, p, α, σP), then σ̂P = (σ̂N1 , . . . , σ̂Nm)
being σ̂Nk ∈ Ω(Nk, pNk , αNk ) for all k ≤ m. Next, we define two rules.

Definition 10. We define the batch-ordered jobs without communication rule, BNC, and the batch-ordered
jobs with communication rule, BC, for each partition of N , P = {N1, . . . , Nm}, and each (N, p, α, σP) ∈ SB
with σP = (N1, . . . , Nm), by

BNC(N, p, α, σP) =
( 1

|Ω(N, p, α, σP)|

[ ∑
σ̂P∈Ω(N,p,α,σP )

C(i, σ̂P)
])

i∈N
, and

BC(N, p, α, σP) =
( 1

|Ω(N, p, α, σP)|

[ ∑
σ̂P∈Ω(N,p,α,σP )

(
C(i, σ̂P)−

∑
l∈P (i,σ̂P )

gli
)])

i∈N
.

When employing the BNC rule, each agent pays the average of its aggregate cost in the set of optimal
orders in which the initial order of the batches is respected. When employing the BC rule, for each order
in Ω(N, p, α, σP), after such distribution, each agent evaluates whether there exists another agent initially
positioned ahead of it with a lower urgency. If such an agent exists, the savings resulting from reordering
are subtracted from the payment of the agent who initially occupied the worst position. Finally, each agent
pays the average of its aggregate cost.

Next, we show that the rules defined above are core allocations of the games previously defined. Before
showing that, we relate the cost of a coalition S ∈ 2N in the orders σ̂P and σP∩S .

Lemma 11. Let P = {N1, . . . , Nm} be a partition of N and let (N, p, α, σP) ∈ SB with σP = (N1, . . . , Nm),
C(S, σ̂P) ≤ C(S, σP∩S) for all S ∈ 2N and σ̂P ∈ Ω(N, p, α, σP).

Proof. Let (N, p, α, σP) ∈ SB, S ∈ 2N and σ̂P ∈ Ω(N, p, α, σP). First, for all r ∈ {1, . . . ,m},

C(Nr ∩ S, σ̂P) =
∑

i∈Nr∩S

αi

∑
j∈P (i,σ̂P )

pj =
∑

i∈Nr∩S

αi

∑
j∈Nr−1

pj +
∑

i∈Nr∩S

αi

∑
j∈P (i,σ̂P )∩Nr

pj

=
∑

i∈Nr∩S

αi

∑
j∈Nr−1

pj +
∑

i∈Nr∩S

αi

∑
j∈Nr
uj>ui

pj

=
∑

i∈Nr∩S

αi

∑
j∈Nr−1

pj +
∑

i∈Nr∩S

αi

∑
j∈Nr∩(N\S)

uj>ui

pj +
∑

i∈Nr∩S

αi

∑
j∈Nr∩S
uj>ui

pj

≤
∑

i∈Nr∩S

αi

∑
j∈Nr−1

pj +
∑

i∈Nr∩S

αi

∑
j∈Nr∩(N\S)

pj +
∑

i∈Nr∩S

αi

∑
j∈Nr∩S
uj>ui

pj

=
∑

i∈Nr∩S

αi

∑
j∈Nr−1

pj +
∑

i∈Nr∩S

αi

∑
j∈P (i,σP∩S)∩Nr

pj =
∑

i∈Nr∩S

αi

∑
j∈P (i,σP∩S)

pj

=C(Nr ∩ S, σP∩S),

where the fifth equality is true by definition of σP∩S . Then, applying the last equation,

C(S, σ̂P) =

m∑
r=1

C(Nr ∩ S, σ̂P) ≤
m∑

r=1

C(Nr ∩ S, σP∩S) = C(S, σP∩S).



Theorem 12. BNC(N, p, α, σP) ∈ Core(c̄σP ) for all (N, p, α, σP) ∈ SB and BC(N, p, α, σP) ∈ Core(cσP )
for all (N, p, α, σP) ∈ SB.

Proof. Let (N, p, α, σP) ∈ SB. Efficiency follows by efficiency without communication of BNC and by
efficiency of BC.

Next, we prove stability for BNC. Let x = BNC(N, p, α, σP ), we show that x(S) ≤ c̄σP (S) for all
S ∈ 2N . Let S ∈ 2N ,

x(S) =
1

|Ω(N, p, α, σP)|
∑

σ̂P∈Ω(N,p,α,σP )

C(S, σ̂P)

≤ 1

|Ω(N, p, α, σP)|
∑

σ̂P∈Ω(N,p,α,σP )

C(S, σP∩S) = C(S, σP∩S) = c̄σP (S),

where the inequality is true by Lemma 11.
It remains to prove stability for BC. Let x = BC(N, p, α, σP ) and S ∈ 2N ,

x(S) =
1

|Ω(N, p, α, σP)|
∑

σ̂P∈Ω(N,p,α,σP )

(
C(S, σ̂P)−

∑
i∈S

∑
l∈P (i,σ̂P )

gli
)
.

We show that x(S) ≤ cσP (S) for all S ∈ 2N . Before that, by Lemma 11, c(S, σ̂P) ≤ c(S, σP∩S) for all
σ̂P ∈ Ω(N, p, α, σP) and,∑

i∈S

∑
l∈P (i,σ̂P )

gli ≥
∑
l,i∈S

l∈P (i,σ̂P )

gli =
∑
l,i∈S

l∈P (i,σP∩S)

gli ≥
∑

S′∈S/σP∩S

∑
l,i∈S′

l∈P (i,σP∩S)

gli, (5)

where the equality is true since P (i, σ̂P) ∩ S = P (i, σP∩S) ∩ S. Therefore, using Lemma 11 and Equation
(5),

x(S) =
1

|Ω(N, p, α, σP)|
∑

σ̂P∈Ω(N,p,α,σP )

(
C(S, σ̂P)−

∑
i∈S

∑
l∈P (i,σ̂P )

gli
)

≤ 1

|Ω(N, p, α, σP)|
∑

σ̂P∈Ω(N,p,α,σP )

(
C(S, σP∩S)−

∑
i∈S

∑
l∈P (i,σ̂P )

gli
)

≤ 1

|Ω(N, p, α, σP)|
∑

σ̂P∈Ω(N,p,α,σP )

(
C(S, σP∩S)−

∑
S′∈S/σP∩S

∑
l,i∈S′

l∈P (i,σP∩S)

gli
)

=C(S, σP∩S)−
∑

S′∈S/σP∩S

∑
l,i∈S′

l∈P (i,σP∩S)

gli = cσP (S).

Next, we characterize the rules. To do that, we introduce four properties for a cost allocation rule
on SB. Given a sequencing situation with batch-ordered jobs (N, p, α, σP), a cost allocation rule for a
sequencing situation with batch-ordered jobs ψ satisfies

� efficiency if for all (N, p, α, σP) ∈ SB,
∑
i∈N

ψi(N, p, α, σP) = C(N, σ̂) for any σ̂ ∈ Ω(N, p, α);

� efficiency without communication if for all (N, p, α, σP) ∈ SB,
∑
i∈N

ψi(N, p, α, σP) = C(N, σ̂P) for

any σ̂P ∈ Ω(N, p, α, σP);

� equal treatment of equals in batches if for all (N, p, α, σP) ∈ SB, i, j ∈ N , i ̸= j, with r(i) = r(j),
αj = αi, and pj = pi, then ψi(N, p, α, σP) = ψj(N, p, α, σP);

� urgency by batches if for all (N, p, α, σP) ∈ SB, i, j ∈ N satisfying one of the following conditions:

(i) r(j) > r(i),

(ii) r(j) = r(i) and uj < ui,

(iii) r(j) = r(i), uj = ui and pj > pi,

ψi(N\{j}, pN\{j}, αN\{j}, σP) = ψi(N, p, α, σP).



Theorem 13. The BNC rule is the unique rule on SB that satisfies the properties of efficiency without
communication, equal treatment of equals in batches and urgency by batches.

Proof. Let (N, p, α, σP) be a sequencing situation with batch-ordered jobs. It is easily seen that BNC
satisfies efficiency without communication.

Now, we show that the BNC rule satisfies equal treatment of equals in batches. Let i, j ∈ N , i ̸= j,
such that αi = αj , pi = pj and r(i) = r(j). For each σ̂ ∈ Ω(N, p, α, σP), there exists σ̂′ ∈ Ω(N, p, α, σP)
such that σ̂′(i) = σ̂(j), σ̂′(j) = σ̂(i) and σ̂′(k) = σ̂(k) for each k ∈ N\{i, j}. Therefore, C(i, σ̂) = C(j, σ̂′)
and it follows that BNCi(N, p, α, σP) = BNCj(N, p, α, σP). Applying the definition of BNC, it follows
that equal treatment of equals in batches holds.

Next, we show that it satisfies urgency by batches. Let r ≤ m and i, j ∈ N . If r(j) > r(i) it follows
directly by definition of σ̂P . If r(j) = r(i) and uj < ui or r(j) = r(i), uj = ui and pj > pi, for each σ̂ ∈
Ω(N, p, α, σP), we consider the order σ̂N\{j} defined by σ̂N\{j}(k) = σ̂(k) if k ∈ P (j, σ̂) and σ̂N\{j}(k) =
σ̂(k)−1 if k ∈ (N\{j})\P (j, σ̂). By definition of Ω(N, p, α, σP), for each σ̂ ∈ Ω(N, p, α, σP), C(i, σ̂N\{j}) =
C(i, σ̂) since σ̂(i) < σ̂(j). Then, Ω(N\{j}, pN\{j}, αN\{j}, σP) = {σ̂N\{j} : σ̂ ∈ Ω(N, p, α, σP)} and
BNCi(N\{j}, pN\{j}, αN\{j}, σP) = BNCi(N, p, α, σP). Applying the definition of BNC, it follows that
urgency by batches holds.

Finally, we show uniqueness. Let ψ be a rule satisfying efficiency without communication, equal
treatment of equals in batches and urgency by batches. For each r ∈ {1, . . . ,m}, let Sr = {Sr,1, . . . , Sr,q}
be the partition of Nr satisfying

1. ui = uj , pi = pj for each i, j ∈ Sr,w, w ∈ {1, . . . , q}.
2. ui ≥ uj for each i ∈ Sr,w, j ∈ Sr,w+1, w ∈ {1, . . . , q − 1}.
3. pi < pj for each i ∈ Sr,w, j ∈ Sr,w+1 with ui = uj , w ∈ {1, . . . , q − 1}.
Then, S = {S1, . . . ,Sm} is a partition of N . We show that ψ(N, p, α, σP) = BNC(N, p, α, σP) by

induction on s = |S| = |S1|+ . . .+ |Sm|.
If s = 1, it follows that P = {N}, αi = αj and pi = pj for all i, j ∈ N . By efficiency without

communication, ∑
i∈N

ψi(N, p, α, σP ) = C(N, σ̂P),

where σ̂P ∈ Ω(N, p, α, σP). By equal treatment of equals in batches ψi(N, p, α, σP) = ψj(N, p, α, σP) for
each i, j ∈ N . Combined with efficiency without communication, it follows

ψi(N, p, α, σP) =
C(N, σ̂P)

n
= BNCi(N, p, α, σP)for alli ∈ N.

Hence, the result holds for s = 1.
Next, we proceed with the induction step. Let l ∈ {2, . . . , n}, assume ψ(N, p, α, σP ) = BNC(N, p, α, σP)

if s ≤ l − 1 and let s = l. Let σ̂P ∈ Ω(N, p, α, σP). By the property of urgency by batches,

ψN\Sl
(N, p, α, σP) = ψ(N\Sl, pN\Sl

, αS\Sl
, σP).

By the induction hypothesis, it follows

ψN\Sl
(N, p, α, σP) = ψ(N\Sl, pN\Sl

, αN\Sl
, σP) = BNC(N\Sl, pN\Sl

, αN\Sl
, σP).

It remains to prove that ψSl(N, p, α, σP) = BNCSl(N, p, α, σP). By efficiency without communication,∑
i∈N\Sl

ψi(N, p, α, σP) =
∑

i∈N\Sl

ψi(N\Sl, pN\Sl
, αS\Sl

, σP) = C(N\Sl, σ̂P), (6)

and ∑
i∈N

ψi(N, p, α, σP) = C(N, σ̂P) = C(N\Sl, σ̂P) + C(Sl, σ̂P). (7)

Then, using (6) and (7),∑
i∈Sl

ψi(N, p, α, σP) =
∑
i∈N

ψi(N, p, α, σP)−
∑

i∈N\Sl

ψi(N, p, α, σP) = C(Sl, σ̂P).

To conclude, by equal treatment of equals in batches,

ψi(N, p, α, σP) =
C(Sl, σ̂P)

|Sl|
= BNCi(N, p, α, σP) for all i ∈ Sl.

By mathematical induction, it follows ψ = BNC.



The characterization of the BC rule follows from arguments analogous to Theorem 13, so the proof is
omitted.

Theorem 14. The BC rule is the unique rule on SB that satisfies the properties of efficiency, equal
treatment of equals in batches and urgency by batches.

4. EXAMPLE: A POWER OUTAGE IN VIGO

This section illustrates the practical implications of the sequencing models through a real-world scenario
involving a power outage in the city of Vigo, Spain. Suppose that there are six affected factories, which
are located across three neighborhoods: Valladares, Teis, and Vigo Centre. A remote repair company is
contracted to restore electricity. Each repair takes one hour per factory, and each factory suffers a different
hourly loss due to the interruption. The longer a factory remains without power, the higher its total cost
in terms of lost production. Each factory has a different hourly loss: α = (60, 50, 40, 30, 20, 10). The total
cost resulting from the chosen repair sequence must be shared among the factories. Consequently, the
repair company is dealing with a sequencing situation with six jobs. The question is: how should this
cost be allocated fairly, depending on what we know about the order of job arrivals? We analyze three
scenarios:

1. The power outage occurs simultaneously across all neighborhoods, and there is no predetermined
priority among the factories. This corresponds to a standard sequencing situation without ini-
tial order, defined as (N, p, α) ∈ S, where N = {1, 2, 3, 4, 5, 6}, p = (1, 1, 1, 1, 1, 1), and α =
(60, 50, 40, 30, 20, 10). The optimal order is σ̂ = (1, 2, 3, 4, 5, 6), and the cost allocation can be deter-
mined via the CS rule.

2. An initial order among neighborhoods is established: factories in Teis are affected first, followed by
those in Valladares, and then those in Vigo Centre. Consequently, there exists an initial order among
the neighbourhoods, and we are now dealing with a sequencing situation with batch-ordered jobs
(N, p, α, σP) ∈ SB where (N, p, α) are the same as above and σP = ({3, 5}, {1}, {2, 4, 6}). Within this
scenario, two cases are considered: one where factories cannot negotiate reordering across batches
(using the BNC rule) and another where inter-batch communication is allowed (using the BC rule).

3. The order within each neighborhood is predetermined: in Teis, Factory 5 is affected before Factory
3, and in Vigo Centre the order is Factory 4, then Factory 6, and finally, Factory 2. Hence, this
constitutes a sequencing situation with initial order (N, p, α, σ0) ∈ S0 where (N, p, α) are the same
as above and σ0 = (5, 3, 1, 4, 6, 2). The cost could be distributed using the CSOλ rule with λij = 0
for all i, j ∈ N .

Table 1 summarizes the cost allocation for each factory under the different sequencing rules. Under
the CS, the BC and the CSO0 rules, the total cost is 560, while the BNC rule results in a higher total cost
of 670 due to the rigidity of the imposed batch order. This example shows that the cost borne by each
factory depends on its position in the initial order considered. In situations without an initial order, we
consider the optimal order; in situations with batch-ordered jobs, we consider the optimal order where the
initial order of the batches is respected; and in situations with an established initial order, we adhere to
that predetermined order.

Rule Factory 1 Factory 2 Factory 3 Factory 4 Factory 5 Factory 6 Total Cost
CS 60 100 120 120 100 60 560
BNC 180 200 40 150 40 60 670
BC 120 160 40 140 40 60 560
CSOλ 120 200 60 110 20 50 560

Table 1: Cost allocation for each factory under different sequencing scenarios.

5. CONNECTIONS WITH CLASSICAL SEQUENCING MODELS

In this work, we have analyzed sequencing situations involving batch-ordered jobs from a game-
theoretical perspective. Our study has provided a comprehensive framework for understanding how costs
can be allocated in such scenarios while ensuring stability and efficiency. In this section, we show how our
results can be seen as a generalization of two classic situations: sequencing situations with an initial order
and those without an initial order.

First, when each batch consists of a single job, it coincides with sequencing situations with an initial
order. In this case, the BC rule reduces to CSOλ with λij = 0 for all i, j ∈ N , uniquely characterized by the



properties of efficiency and urgency. Second, when all jobs form a single batch, the model coincides with
sequencing situations without an initial order. Here, BC = BNC = CS, which is uniquely characterized by
efficiency, equal treatment of equals, and urgency.
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